rility Name: GP-Former Allison Plant 10			K	KEI Project #: 2829e-001/003					
iple 1.D.: 169-5				Well Location:					
Monitor	ing Well Dat	<u> </u>			Sample	Types (cir	cle all app	licable)	
Well Material	ing wen bat	L PVC)SS/T	eflon)						
· · ·		(10)		1/~	Grab/Composite				
Inside Diameter, in.	oi alat	(10)	ft	ľ	lit Sample				
Stick up or stick down h		23.6	ft		iplicate (Du	plicate ID:	. <u></u>)	
Total depth of well (TD)		236	ft	i	S/MSD	P • • • • • • • • • • • • • • • • • • •			
Depth to product		10.10			her				
Depth to water (DTW)		19./5	ft [01					
					N. 6		nnling.		
Conventional sa	ampling)	⊂OR				opurge sar	npmg		
Height of water column					imp placem	ent	20	. (2	
(H = TD - DTW)	/	ft	I	V4	id-screen)				
Conversion value (CV)*	X		,	^	rged from f	low cell?		(D/N (V/N	
1 Well volume = H x CV	V <u>=</u>	gal	1		n > 0.3 feet				
3 Well volumes =	=	gal	I	-	e sampling	used?		Y (1)	
Purge method			1	owrate =				mL/mi	
R = hailer P = numr	b) B/P		ID	number	from contro	ller consol	e #		
*Conversion values (gal.	$\overline{f(t)}$: 1" dia =	0.04, 2" dia	a = 0.16	, 4" dia =	: 0.65, 6" di	a = 1.47			
	•								
" d Test(s)	Stability	Result F	Result	<u>Result</u>	Result	<u>Result</u>	<u>Result</u>	<u>Result</u>	
formed	•	$\overline{(3 \text{ min})}$ (6	5 min)	(9 min)	(12 min)	(15 min)	<u>(18 min)</u>	(21 min)	
Temperature (°C)			4,43	14.39	14.36				
Spec. Cond (µmhos)			940	.944	1948				
			.86	4.41	4,50				
pH			.92	6.93	6.91				
	-/- 10 mV**		196	194	193				
	+/- 10%**								
$H_2S (mg/L)$									
$Fe^{2+} (mg/L)$									
Check stability after three	ee readings an	d every read	ding the	ereafter u	ntil achieve	d.			
**Only one of these para	ameters must	reach stabil	ity.						
Omy one of these part			,						
Observations:									
Volume of water purged	from well:	gal	lons						
Sample Date: 5 / 26	. /DK	Sam	nle Tin	ne: 14 :	<u>30</u> (mili	tary time)			
Was metals sample filter	red prior to pr	eservation?	YES	S NO	method: ().45 um car	tridge / oth	ier:	
Color of water before fil	tration:	A ft	er filtra	tion:		•	•		
Reaction upon addition	of preservativa	S? YES	S NO	explai	in:				
Appearance of Water: (Clear/Sliohtly	Turbid/Tu	rbid/Ve	rv Turbio	I)				
Well condition:	CICAL BIIGHTY)	1010.	.,	- /				
wen condition.	,	<u> </u>							
	, //								
	11 11.					1 1			
Ciamatana.		77			Date:	5/28/109	6		
Signature:	$-\sqrt{\mathcal{V}}$					= -			

acility Name: GP-Former Allison	KEI Project #: 2829e-001/003							
Sample I.D.: 169-1)		Well Loc	Well Location:					
Sample 1.D. 104 1)							_	
Monitoring Well I	ata		Sample	Types (cir	cle all app	licable)		
Well Material	(PVC)SS/Tef	lon)	on) Menitoring Well					
Inside Diameter, in.	$(1 \bigcirc 46)$		Grab/Compos	site				
Stick up or stick down height		ft	Split Sample					
Total depth of well (TD)	35,2	ft	Duplicate (Du	uplicate ID:)		
Depth to product		ft	MS/MSD					
Depth to water (DTW)	19.1	ft	Other					
Depth to water (DT w)	<u> </u>							
	———		Mici	ropurge sar	npling			
(Conventional sampling)		Depth of	pump placen		<u> </u>		_	
Height of water column	<u></u>		mid-screen)	10110	32	2.2	f	
(H = TD - DTW)	<u> ft </u>	4	ourged from 1	Tow cell?				
Conversion value (CV)* x			own >0.3 feet			<u> </u>	_	
1 Well volume H x CV =	gal	1			·	Y/Ø		
3 Well volumes = =	gal	Flowrate	ive sampling –	uscu:		mL/mi	ir	
Purgemethod	D		= er from contro	aller consol	e # /	65		
(B = bailer, P = pump) B /	P	1D number		$\frac{31161 \text{ COHSOI}}{10 - 1 17}$	ζ π /	<u>w</u>	_	
*Conversion values (gal/ft): 1" dia	$= 0.04, 2^{\circ} \text{ dia} =$	= 0.16, 4° dia	1 = 0.05, 0 a	la — 1.47				
		1. 7	D . 14	Decult	Result	Result		
ield Test(s) Stability		sult Resu		Result	(18 min)	(21 min)		
Performed Range		<u>nin) (9 mi</u>		(15 min)	(10 111111)	(21 11111)		
Temperature (°C) +/- 3%	15,07 15.0							
Spec. Cond (µmhos) +/- 3%		.59 <u>.1053</u>						
D.O. (mg/L) +/- 10%**		14 4.52						
pH +/- 0.1		84 6.85						
ORP (mV) +/- 10 mV**	" <u>60 56</u>	<u> 52</u>	48					
Turbidity (NTU) +/- 10%**								
$H_2S (mg/L)$								
Fe ²⁺ (mg/L)				1				
Check stability after three readings	and every reading	ng thereafter	until achieve	ea.				
**Only one of these parameters mu	st reach stability	у.						
Observations:								
Volume of water purged from well	gallo	ns (C	/ 10					
Sample Date: 5 / 28 /08	Sampl	le Time: / 7	: <u>//</u> (mil	itary time)				
Was metals sample filtered prior to	preservation?	YES NO	method:	0.45 µm cai	rtridge / oth	ner:	-	
Color of water before filtration:	After	filtration:						
Reaction upon addition of preserva	tives? YES	NO exp	lain:					
Appearance of Water: (Clear/Sligh	tly Turbid/Turb	id/Very Tur	oid)					
Well condition:								
0	\sim			i i				
/ / /	()		_	Shi lac				
Signature:			Date:	<u> 1/5/08</u>	· 			
				. ("				

	GROOTIE						
rility Name: GP-Fo	rmer Allison P	lant 10		oject #: 2829e-	001/003		
iple I.D.: 167-5)		Well Le	ocation:			·
						1 11	L'achle)
Monit	oring Well Da	ta				cle all app	ncable)
Well Material	<u>-</u>	(PVC)SS/Tefl	on)	Monitoring W			
Inside Diameter, in.	_	(1246)		Grab/Compos	site		
Stick up or stick dowr	height _		ft	Split Sample			,
Total depth of well (T	D)	22	ft	Duplicate (Du	iplicate ID:)
Depth to product	_		ft	MS/MSD			
Depth to water (DTW)	17.82	ft	Other			
							
Conventiona	l sampling	=OR⇒		Micr	opurge sai	mpling	
Height of water colun			Depth o	f pump placem	ent		^ -
(H = TD - DTW)		ft		e mid-screen)			9 <u>f</u>
Conversion value (C)	7)* X			s purged from f	low cell?		Ø/N
1 Well volume = H x		gal	Is draw	down >0.3 feet			(A)\ N
3 Well volumes =	=	gal	Was pas	ssive sampling	used?		Y /(1)
Purge method			Flowrat	e =			mL/mir
$\sqrt{R} = \text{hailer } P = \text{nu}$	mp) B/P		ID num	ber from contro	oller consol	e #	
*Conversion values (g	ral/ft): 1" dia =	= 0.04, 2" dia =	0.16, 4" d	lia = 0.65, 6" d	ia = 1.47		
Conversion various (S	,: · / · ·	,					
" 'd Test(s)	Stability	Result Res	ult <u>Res</u>	<u>ult Result</u>	<u>Result</u>	<u>Result</u>	Result
formed	Range	(3 min) (6 n	<u>nin) (9 m</u>		<u>(15 min)</u>	(18 min)	(21 min)
Temperature (°C)	+/- 3%	ilo.21 16.1	8 16.2				
Spec. Cond (µmhos)	+/- 3%	2.19 2.2		5 2.26			
D.O. (mg/L)	+/- 10%**		42 8.3.				
pH	+/- 0.1	6.97 6.9			<u></u> -		
ORP (mV)	+/- 10 mV**	267 26	8 26	7 267		***	
Turbidity (NTU)	+/- 10%**						
H_2S (mg/L)							
Fe^{2+} (mg/L)							
Check stability after the	hree readings a	nd every readin	g thereafte	er until achieve	d.		
**Only one of these p	arameters must	t reach stability	•				
Observations:							•
Volume of water purg	ged from well:	gallot	1S	= 20 (:11			
Sample Date: 5 /	28 <u>/ 68</u>	Sample	e Time: /	<u> </u>	tary time)	4 : 3 / - +1	
Was metals sample fil	tered prior to p	reservation?	YES N	O method:	0.45 μm cai	rtriage / Ou	ier:
Color of water before Reaction upon addition	filtration:	After	filtration:_				
Reaction upon additio	n of preservati	ves? YES	NO ex	rplain:			
Appearance of Water:	(Clear/Slight)	y Turbid/Turbi	d/Very Iu	irbid)			
Well condition:							
						•	
					,	/	
		2			-/201	1 C	

										_
acility Name: GP-Former Allison Plant 10			KEI Project #: 2829e-001/003						_	
Sample I.D.: 167-6				Well Location:						
Sample 1.D. [67	<u></u>									
Moni	toring Well Da	ıta				Sample	Types (cir	cle all app	licable)	
Well Material	toring wen ba	(PVC)SS	/Teflo							
Inside Diameter, in.	•	(102) 6)			Grah/Composite					
Stick up or stick down	n height			ft	Spl	it Sample		# ^ \		
Total depth of well (T		33		ft	Dú	plicate (Du	plicate ID:	(Da)1	67- <u>(</u>)	
Depth to product				ft		MSD				
Depth to product Depth to water (DTW)	n -	17.96		ft	Oth	ner				
Depth to water (D1 W	<u> </u>	111111								
Conventiona	Loompling		R⇒			Micro	opurge sar	npling		
		— (-0	114	Depth	of pu	mp placem			() >	
Height of water column	1111	ft				d-screen)		1 1 J	et 30	ft
(H = TD - DTW)	734			(1		ged from fl	ow cell?	(Ϋ́N	
Conversion value (C)		gal		i	-	n > 0.3 feet			(C)/N	
1 Well volume H x	=	gal				sampling	used?		Y /Ø	
3 Well volumes =		gai		Flowr		, samping		<u></u>	mL/mi	n
Purge method) D/D			1		rom contro	ller consol	e #		
*Conversion values ($\frac{\text{Imp}}{\text{end}(ft)} = \frac{B/P}{V}$		lia = (16 4"	dia =	0.65.6" di	a = 1.47			
*Conversion values (gai/π): 1 dia –	- 0.04, 2	11a – C),10, T	Q1u	0.05, 0				
	Stability	Result	Resi	ılt R	esult	Result	Result	Result	Result	
ield Test(s)	Range	(3 min)	(6 m)		min)	(12 min)	(15 min)	(18 min)	(21 min)	
Performed Temperature (°C)	+/- 3%	16-25	16.33		35	16.32				
Temperature (°C)	+/- 3%	,799	10/6		sol .	1814				
Spec. Cond (µmhos) D.O. (mg/L)	+/- 10%**	2.39	2.24		52	1.50				
pH	+/- 0.1	7.02	7.02		02	7.02				
ORP (mV)	+/- 10 mV**	156	154		52	151				
Turbidity (NTU)	+/- 10%**	170	<i>I - Z - !</i> —							
1	17-1070									
$H_2S (mg/L)$ $Fe^{2+} (mg/L)$										
Check stability after t	hree readings a	nd every r	eading	therea	fter ur	ntil achieve	d.			
**Only one of these p	narameters mus	t reach stal	bility.	,		,				
Omy one of these p	jaramoters mas									
Observations:										
Volume of water pur	ged from well:	ç	gallons	S						
Commis Datas 5 /	28 108	S	ample	Time:	15:	00 (milit	tary time)			
Was metals sample fi	Itered prior to r	reservatio	n? ·	YES	NO	method: 0).45 µm cai	rtridge / oth	ner:	_
Color of water before	filtration:	A	after fi	iltration						
Position upon addition	Color of water before filtration: After filtration: Reaction upon addition of preservatives? YES NO explain:									
Appearance of Water	· (Clear/Slight)	v Turbid/	 Furbid	/Very 7	urbid	.)				
Well condition:	. (Creambright	i dia di di di	. 0.1 0 3 0			,				
WEN CONCINION.										
	_	<u>. </u>								
)	//		or a management of the		1 /			
Signature:	/_ (11-	[//		<u> </u>	_ Date:	5/25/05			
D1511atu10			$\overline{}$			-				

Well Material Inside Diameter, in. CP-Former Allison Plant 10 Monitoring Well Data (PVC)SS/T	Well Location: Sample Types (circle all applicable)
Well Material Inside Diameter, in. Monitoring Well Data (PVC)SS/T	
Well Material Inside Diameter, in. (PVC)SS/T (1246)	
Stick up or stick down height Total depth of well (TD) Depth to product Depth to water (DTW) Conventional sampling Height of water column Conventional sampling COR	ft Split Sample ft Duplicate (Duplicate ID:) ft MS/MSD ft Other Micropurge sampling Depth of pump placement
(H = TD - DTW) ft	(place initia-serecti)
Conversion value (CV)* x	Dubbles parged trem
1 Well volume = H x CV = gal	13 414 440 111
3 Well volumes = gal	was passive sampling asea.
Purge method	Flowrate = mL/min ID number from controller console #
$(B = bailer, P = pump) \qquad B/P$	1D humber from controller controller
*Conversion values (gal/ft): 1" dia = 0.04, 2" dia	-0.10, 4 dia $-0.05, 0$ dia -1.17
Normed Range (3 min) (6 min) (1 min	Result Result<
Check stability after three readings and every rea	ding thereafter until achieved.
**Only one of these parameters must reach stabil Observations: Volume of water purged from well: gal Sample Date: 5 / 28/ 68 Sam	lons ple Time: /5: 50 (military time) YES NO method: 0.45 μm cartridge / other: er filtration:

acility Name: GP-Former Allison Pla	ınt 10	KEI Project #: 2829e-001/003					
Sample I.D.: 165-0		Well Location:					
Sample 1.D.: 165 ()							
Monitoring Well Dat	<u> </u>	Sample Types (circle	all applicable)				
	# PVC)SS/Teflo						
VV C11 IV1dtC11d1	$(1\bigcirc 46)$	Grab/Composite					
Inside Diameter, in.	(100	ft Split Sample					
Stick up or stick down height	1/1 /	ft Duplicate (Duplicate ID:)				
Total depth of well (TD)	46.6	ft MS/MSD	,				
Depth to product		 					
Depth to water (DTW)	13.75	ft Other					
			•				
Conventional sampling	COR⇒	Micropurge sampl	ing				
Height of water column		Depth of pump placement					
(H = TD - DTW)	ft	(place mid-screen)	436 ft				
Conversion value (CV)* x		Bubbles purged from flow cell?	N /دگ				
	gal	Is drawdown >0.3 feet	�/N				
	gal	Was passive sampling used?	Y 🖄				
	<u> </u>	Flowrate =	mL/min				
Purge method (B = bailer, P = pump) B/P	1		#				
(B = bailer, P = pump) B / P *Conversion values (gal/ft): 1" dia = 0	l	0.16 A" dia = 0.65 6" dia = 1.47					
*Conversion values (gal/ π): 1 dia – (0.04, 2 dia = 0	7.10, 4 tha 0.03, 0 tha 1.1.					
0.137	Decelt Dece	ılt <u>Result Result Result R</u>	Result Result				
Field Test(s) Stability	Result Resu	110 100000	8 min) (21 min)				
10110111100	(3 min) (6 mi	75 1111 75 111111	<u> </u>				
1 Chiperature (-)	12.56 12.5						
Spec. Cond (µmhos) +/- 3%	,947 ,96x	962 471					
D.O. (mg/L) +/- 10%**	4.68 4.81	4.17 3.90					
pH +/- 0.1	7.12 7.00	8 707 706					
	100 96	93 92					
Turbidity (NTU) +/- 10%**							
H_2S (mg/L)							
Fe^{2+} (mg/L)							
Check stability after three readings and	d every reading	thereafter until achieved.					
**Only one of these parameters must i	reach stability.						
· ·							
Observations:							
Volume of water purged from well:	gallons	5					
Sample Date: 5 / 28/16	Sample	Time: $6:40$ (military time)					
Was motals sample filtered prior to pre	eservation?	YES NO method: 0.45 um cartrid	ge / other:				
Color of water before filtration:	After fi	Itration:					
Color of water before filtration: Reaction upon addition of preservative	es? YES I	NO explain:					
Appearance of Water: (Clear/Slightly	Turbid/Turbid	/Very Turbid)					
	Turbiu/Turbiu						
Well condition:							
0 0	$\widehat{}$						
		/ /					
		Date: 5/28/08					

		10		IZEI	Duning	++. 2020a (001/003			
Smility Name: GP-Forn		lant 10		KEI Project #: 2829e-001/003 Well Location:						
.ple I.D.: 1665				Wei	Well Location.					
						Sample	Types (cir	cle all ann	licable)	
	ring Well Da	ta	/Tafle	Sample Types (circle all applicable) Aonitoring Well						
Well Material (PVC)SS/Teflor Inside Diameter in (1246))11) 	1/						
Inside Diameter, in.	-	(102	4 0)		Grab/Composite					
Stick up or stick down h		:0		ft)
Total depth of well (TD) _	19			ft Duplicate (Duplicate ID:					,
Depth to product	-			ft	1					
Depth to water (DTW)	· · · · · · · · · · · · · · · · · · ·	14.5		ft	Oth	1er				
Conventional s		=0	R⇒				opurge sar	npung		
Height of water column						mp placem	ent	16		f
(H = TD - DTW)		ft		, -		d-screen)	110		♂ /N	
Conversion value (CV)	* <u>x</u>			1	_	ged from f	low cell?		(V)/N	
1 Well volume = H x C	V <u>=</u>	gal				n > 0.3 feet	10		Y/N	
3 Well volumes =	=	gal		1		sampling	used?	<u> </u>	mL/	ir
Purge method					rate =	_	1		IIIL/	11111
(B = bailer, P = pum)	p) B/P	>		ID nu	ımber f	from contro	ller consol	e #		
*Conversion values (gal	/ft): 1" dia =	0.04, 2"	dia = (0.16, 4	" dia =	0.65, 6" di	a = 1.47			
							75 1.	D 14	Degult	٦
"d Test(s)	Stability	.Result	Resi		Result	Result	Result	Result	Result	
ormed	Range	(3 min)	<u>(6 m</u>		<u>min)</u>	(12 min)	(15 min)	<u>(18 min)</u>	(21 min)	٠
Temperature (°C)	+/- 3%	17,73	17/1		17,52					
Spec. Cond (µmhos)	+/- 3%	<u>1807</u>	1806		829					
D.O. (mg/L)	+/- 10%**	1.71	1,6		1.55					
pН	+/- 0.1	697	<u> (, , q</u>		6.97					
01- ()	-/- 10 mV**	254	25	<u>5</u> _	254		·			
1 442 0 2 442 2 7	+/- 10%**									
$H_2S (mg/L)$										
Fe^{2+} (mg/L)			1.	41	- C	til cobierre	1			
Check stability after three	ee readings at	nd every r	eading	ginere	anter ur	RII acineve	u.			
**Only one of these par	ameters must	reach sta	omity.							
Observations:	1 6	,	rollon	c						
Volume of water purged	i from well:		amnle	s Time:	il.	<u>46</u> (mili	tary time)			
Sample Date: 5/25 Was metals sample filte	_/ <u>00</u>	oitourontic	ampic m2	THIIC.	NO.	method: () 45 um car	tridge / oth	ner:	
Color of water before fi	rea prior to p	reservatio	uu: Viter fi	iltratio	n.	memou.	7. 15 paris cua	111450	-	
Reaction upon addition	of progonyati	r vec2 V	Ed .	NO	evnlai	n'				
Appearance of Water: (Clear/Slightle	ىر تەرەرى ئالەردىكى ئالىرى	Turbic	Werv	Turbid)				
Appearance of water. (Clean Singini	y Turbiu/(1 41 010		1 ui oi u	7				
Well condition:										
	. 11 11						, 1			
Signatura:	1 LNK	2				_ Date:	5/28/0X			
Signature:	1/2 - 0									

acility Name: GP-Former Allison Plant 10			K	KEI Project #: 2829e-001/003					
		Iaill 10		Well Location:					
Sample I.D.: 166	<u>O</u>			V C11 100	<u>cation.</u>				
		4-		1 [Sample	Types (cir	cle all app	licable)	,
Moni Well Material	toring Well Da	ita ((PVC) SS/	Teflon)		Monitoring W		ere un up p	,	
Inside Diameter, in.	•	(10)	6)		Grah/Compos	ite			
Stick up or stick down	n height		fit	1	Split Sample				
Total depth of well (T		50	ft	1	Duplicate (Du	plicate ID:			_)
Depth to product			ft	1	MS/MSD				
• •	-	14,3		1	Other				
Depth to water (DTW)	1712	<u> </u>	J L					
Conventiona	I sampling	——— (= 0	R⇒		Micr	opurge sar	npling		
Height of water colum				epth of	pump placem	ent		_	
(H = TD - DTW)	1111	ft			mid-screen)		4	7	ft
Conversion value (CV	/)* <u>x</u>		B		purged from f	low cell?		₡ /N	
1 Well volume = H x		gal			own >0.3 feet			Ý/N	
3 Well volumes =	=	gal	\mid_{W}	as pas	sive sampling	used?		YN	
Purge method		541	I	.owrate				mL	min/_
(B = bailer, P = pu	mp) B/P				er from contro	ller console	e #		
*Conversion values (ral/ft): 1" dia =	 = 0.04. 2" d·							
Conversion values (gai/10). 1 did	0.01, 2			,				
Field Test(s)	Stability	Result	Result	Resu	ılt Result	Result	Result	Result	<u>i</u>
Performed	Range		(6 min)	(9 m		<u>(15 min)</u>	(18 min)	(21 min	<u>1)</u>
Temperature (°C)	+/- 3%	20112	19.98	19.70	19,60				_
Spec. Cond (µmhos)	+/- 3%	,635	1636	1434	1636	****			_
D.O. (mg/L)	+/- 10%**		3,60	3,44					-
pH .	+/- 0.1	7.26	7.26	7,23					-
ORP (mV)	+/- 10 mV**	90	87	<u>s7</u>	<u></u>				-
Turbidity (NTU)	+/- 10%**								-
H_2S (mg/L)									-
Fe^{2+} (mg/L)									
Check stability after t	hree readings a	nd every re	ading the	ereafte	r until achieve	d.			
**Only one of these p	arameters must	reach stab	ility.						
Observations:						•			
Volume of water purg	ged from well:	ga	allons	- و)				
Sample Date: 5/2	25/00	Sai	mple I ir	ne: <u>/</u>	<u>7 : //)</u> (mili	tary time)			
Was metals sample fi	ltered prior to p	reservation	!? YES	S NO) method: ().45 µm car	triage / ou	ner:	
Color of water before			iter filtra	ition:	•				
Reaction upon addition	on of preservativ	ves?	SNO	exp	olain:				
Appearance of Water:	(Clear/Slightl	y TurbidXT1	urbid/Ve	ery I ur	bid)				
Well condition:		`							

_			_			
raility Name: GP-Former Allison Plant 10		KEI Project #: 2829e-001/003				
ple I.D.: 147 4R		Well Location:				
. pie i.b.: / / gr						
Monitoring Well Data		Sample Types (circle all applicable)				
Well Material (PVC)SS	/Teflon					
W CH I Hatchian		Grab/Composite				
miside Diameter, in.		ft Split Sample				
Stick up or stick down height Total denth of well (TD) 29		ft Duplicate (Duplicate ID:)				
Total dopen of work (1-)		ft MS/MSD				
Depth to product						
Depth to water (DTW))	ft Other	_			
Conventional sampling =C	DR⇒「	Micropurge sampling				
Height of water column		Depth of pump placement				
		(place mid-screen) 26	f			
(11 10 01 11)		Bubbles purged from flow cell?				
Conversion value (CV)* x		Is drawdown >0.3 feet				
1 Well volume = H x CV = gal	1	Was passive sampling used?				
3 Well volumes = gal		Flowrate = mL/m	 111			
Purge method	I	ID number from controller console #	_			
(B = bailer, P = pump) B/P		ID Humber from controller comes	_			
*Conversion values (gal/ft): 1" dia = 0.04, 2"	dia = 0.	.16, 4 dia = 0.65, 6 dia = 1.47				
"'d Test(s) Stability Result	Resul	(01 1)				
Range (3 min)	<u>(6 mir</u>	n) (9 min) (12 min) (15 min) (18 min) (21 min)	l			
Temperature (°C) +/- 3% 15.22	15.13	<u>is://u</u>	l			
Spec. Cond (μmhos) +/- 3% 2.87	2.07	2.87	ĺ			
D.O. (mg/L) +/- 10%** Y.15	5.09	, m	ĺ			
pH +/- 0.1 6.25	6.74	, a ,	ĺ			
	130	129				
	<u></u>					
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
$H_2S (mg/L)$						
Fe ²⁺ (mg/L) Check stability after three readings and every r	eading	thereafter until achieved				
Check stability after three readings and every i	Lilitar	more and a construction				
**Only one of these parameters must reach sta	.omiy.					
Observations:	1.1					
Volume of water purged from well:	gallons					
Sample Date: 5 / 29 / 08 S	ample	Time: $\frac{10}{10}$: $\frac{100}{100}$ (military time)				
Was metals sample filtered prior to preservation	on? Y	YES NO method: 0.45 μm cartridge / other:	_			
Color of water before filtration:	After fil	tration:				
Reaction upon addition of preservatives? Y	ES N	NO explain:				
Appearance of Water: (Clear/Stightly Turbid)	Turbid/	/Very Turbid)				
Well condition:						
		1				
\\						
Signatura: \\ 1\\\		Date: 5/29/08				
Signature:						
\ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						

acility Name: GP-Former Allison Plant 10			I	KEI Project #: 2829e-001/003					
Sample I.D.: 132 R			7	Well Location:					
Sample 1.D.: 132 k									
Monitori	ng Well Da	ta			Sample	Types (cir	cle all app	licable)	
Monitoring Well Data Well Material (PVC)SS/Teflor			eflon)						
	-	(102) 6			ab/eompos				
Inside Diameter, in.	iaht -	(10.0	ft	-	it Sample				
Stick up or stick down he	agm _	19	ft			plicate ID:)	
Total depth of well (TD)	-		ft	1	S/MSD				
Depth to product	-	.1 /	ft	-					
Depth to water (DTW)		11.(11		101				
(Conventional sampling) ⊂OR⇒ Micropurge sampling									
Conventional sa	mpling)	COR					npung		
Height of water column				Depth of pur		ent	16	fi	
(H = TD - DTW)		ft		(place mid					
Conversion value (CV)*	x			Bubbles pur	_	low cell?		Ø/N	
1 Well volume = H x CV	=	gal		s drawdowi				W/N	
3 Well volumes =	=	gal		Vas passive	sampling	used?		Y Ø	
Purge method				lowrate =				mL/mir	
(R = hailer P = numn)) B/P		II	D number f	rom contro	ller consol	e #		
*Conversion values (gal/f	ft): 1" dia =	0.04, 2" dia	= 0.1	6, 4" dia =	0.65, 6" di	a = 1.47			
,,								 _	
ield Test(s)	Stability	Result R	esult	<u>Result</u>	<u>Result</u>	<u>Result</u>	<u>Result</u>	Result	
Performed	Range	(3 min) (6	min)	<u>(9 min)</u>	(12 min)	<u>(15 min)</u>	(18 min)	(21 min)	
Temperature (°C)	+/- 3%	15.02 i	4,98	14.99	14.89				
Spec. Cond (µmhos)	+/- 3%	1.413 1.	410	1,294	1.382				
	-/- 10%**		7.23	6.74	6.70				
pH	+/- 0.1		6.93	6.90	6.89				
ORP (mV) +/-	- 10 mV**		49	250	250				
	-/- 10%**								
$H_2S (mg/L)$									
Fe^{2+} (mg/L)									
Check stability after three	readings ar	nd every read	ling th	nereafter un	til achieve	d.			
**Only one of these parar	meters must	reach stabili	ty.						
omy one or more parties			•						
Observations:									
Volume of water purged	from well:	gall	ons						
Sample Date: 5 / 29		Sam	ple Ti	me: <u>///</u> :	20 (milit	tary time)			
Was metals sample filtere	ed prior to n	reservation?	YE	es no	method: 0).45 µm car	tridge / oth	ner:	
Color of water before filt		A fte	er filtra	ation:		'	•		
Reaction upon addition of					n:				
Appearance of Water: (C	l preservativ	v TurbidATur	bid/V						
Well condition:	nom/ongini		\mathcal{J}^{-1}	y = y	,				
WEII CONGINON.	_	_							
\sim									
	\ \		>			_i /			
Signatura:					Date:	5/29/11	5		
Signature:						- + + + + + + + + + + + + + + + + + + +	-V		

'noility Name: GP-Fo	rmer Allison P	lant 10	K	KEI Project #: 2829e-001/003						
.ple I.D.: /48			W	Well Location:						
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-									
Moni	toring Well Da	ta			Sample	Types (cir	cle all app	licable)		
Well Material (PVC)SS/Teflor			/Teflon)							
Inside Diameter, in.	•	(10		Gr	ab/Compos	ite				
Stick up or stick down	n height		ft	Spl	lit Sample					
Total depth of well (T		25	ft	Du	plicate (Du	iplicate ID:)		
Depth to product	<i>D</i>) -		ft	1	S/MSD					
	.)	///	ft	Oth	ner					
Depth to water (DTW	<u>) </u>	11.0	1.0							
Conventional sampling ← OR ⇒ Micropurge sampling							npling			
Conventiona		— - ← C		nth of nu	mp placem		<u></u>	-		
Height of water colun	nn -	<u> </u>		puror pu (place mi		CIII	2 2	<u>2</u> 1		
(H = TD - DTW)		ft_			ged from f	low cell?		X)/ N		
Conversion value (C)				-	n > 0.3 feet	iow ceii:		YYN		
1 Well volume = H x		gal	1			49		Y /X)		
3 Well volumes =		gal		4	sampling	useu:		mL/mi		
Purge method	·	1		owrate =	,	11	e #	11112/1111		
(B = bailer, P = pu	mp) B/P			number i	rom contro	oller consol	! 			
*Conversion values (g	gal/ft): 1" dia =	· 0.04, 2" (dia = 0.16	$4^{\prime\prime} d_{1}a =$	0.65, 6" ai	a = 1.47				
				- T	D 14	D14	Dogult	Pecult		
"-'d Test(s)	Stability	Result	Result	Result	Result	Result	Result	Result (21 min)		
ormed	Range	<u>(3 min)</u>	(6 min)	(9 min)	(12 min)	(15 min)	(18 min)	(21 11111)		
Temperature (°C)	+/- 3%	13.75	13.51	13.41	<u> 13,37 </u>	13.20				
Spec. Cond (µmhos)	+/- 3%	1,55	1.56	1155	1.5/2	1,56				
D.O. (mg/L)	+/- 10%**	3.89	4.33	4.78	4.90	5,50				
pН	+/- 0.1	6.81	6.88	608	<u>6.90</u>	6.91				
ORP (mV)	+/- 10 mV**	291	<u> 29D</u>	<u> 290</u>	290_	<u> 290</u>				
Turbidity (NTU)	+/- 10%**									
H_2S (mg/L)						-				
Fe^{2+} (mg/L)										
Check stability after t	hree readings a	nd every r	eading the	ereafter ur	itil achieve	d.	•			
**Only one of these p	arameters must	reach stal	bility.							
Observations:										
Volume of water purg	ged from well:		gallons	1.5	1/0					
Sample Date: 5/	29 105	Sa	ample Tin	ne: <u>//</u> :	<u>40</u> (mili	tary time)				
Was metals sample fil	ltered prior to p	reservatio	n? YES	S NO	method: (0.45 µm cai	tridge / oth	ier:		
Color of water before	filtration:	Δ	fter filtra	tion:						
Reaction upon addition	n of preservation	ves? Y	ES NO	explai	n:					
Appearance of Water:	(Clear/Slightl	y Tur) id/I	Γurbid/Ve	ry Turbid)					
Well condition:	` `									
\cap						_//.=	_			
Signature:	1/1/		,		_ Date:	7/29/00)			
7	77					. ,				

acility Name: GP-Former Allison Plant 10	KEI Project #: 2829e-001/003
Sample I.D.: 153	Well Location:
Sample 1.D.: 137	
Monitoring Well Data Well Material (PVC)SS/Teflo Inside Diameter, in. (1246) Stick up or stick down height Total depth of well (TD) 2/ Depth to product Depth to water (DTW) i>o Conventional sampling ←OR⇒ Height of water column (H = TD - DTW) ft Conversion yalue (CV)* x	Sample Types (circle all applicable) Monitoring Well Grab/Composite Split Sample Duplicate (Duplicate ID: MS/MSD Other Depth of pump placement (place mid-screen) Bubbles purged from flow cell?
1 Well youme = H x CV = gal	Is drawdown >0.3 feet
3 Well volumes = gal	Was passive sampling used? Y/(N)
Purge method	Flowrate = mL/min
(B = hailer P = numn) B/P	ID number from controller console #
*Conversion values (gal/ft): 1" dia = 0.04, 2" dia = 0 ield Test(s) Stability Result Result Temperature (°C) +/- 3% 13.17 13.14 Spec. Cond (μ mhos) +/- 3% 13.17 13.14 D.O. (mg/L) +/- 10%** 1.31 11.14 pH +/- 0.1 7.37 13.14 ORP (mV) +/- 10 mV** 302 300 Turbidity (NTU) +/- 10%** H ₂ S (mg/L) Fe ²⁺ (mg/L) Check stability after three readings and every reading **Only one of these parameters must reach stability.	It Result Result Result Result Result Result Result 19 min (12 min) (15 min) (18 min) (21 min) 13,21 (492
Observations:	Time: [1]: 10 (military time) YES NO method: 0.45 µm cartridge / other: Itration: NO explain:

'acility Nama: GP-Fo	rmer Allison P	ant 10		KEI Proje	ct #: 2829e-(001/003			
Tilly I valid. Of I officer I filed			Well Loca						
	<u></u>								
Monit	oring Well Da	fa			Sample	Types (cir	cle all app	licable)	
Well Material	oring wen Da	(PVC)SS/T	eflon)) 🔯	l oni toring W				
Inside Diameter, in.	-	(102) 6			rah/eompos				
Stick up or stick down	height -		f	_ .	plit Sample				
Total depth of well (T		55	f		uplicate (Du	plicate ID:			_)
Depth to product	_		f		IS/MSD				
Depth to water (DTW)	· -	3 12.35	f	- 0	ther				
Depth to water (DT w)	12,37							
Conventional	sampling	←OR	⇒		Micr	opurge sai	mpling		
Height of water colum				Depth of p	ump placem	ent		_	
(H = TD - DTW)		ft			nid-screen)			2	f
Conversion value (C)	* x		I	Bubbles pi	arged from f	low cell?		Q/N	
1 Well volume = H x		gal			vn > 0.3 feet			(Y)/ N	
3 Well volumes =	=	gal	٠ ٦	Was passiv	ve sampling	used?		Y A	
Purge method				Flowrate =				mI	L/mir
(R = bailer P = pu	mp) B / P		I	D number	from contro	oller consol	e #		
*Conversion values (g	al/ft): 1" dia =	0.04, 2" dia	= 0.1	16, 4" dia	= 0.65, 6" di	a = 1.47			
Conversion variety (E									
"inld Test(s)	Stability	Result R	lesult	Result	<u>Result</u>	<u>Result</u>	<u>Result</u>	Resul	-
formed	Range	$(3 \min)$ (6	min) (9 min)	(12 min)	(15 min)	<u>(18 min)</u>	<u>(21 mii</u>	<u>n)</u>
Temperature (°C)	+/- 3%	14.30 i	4.30	14,35					-
Spec. Cond (µmhos)	+/- 3%	,593	1543		1544				-
D.O. (mg/L)	+/- 10%**	4.12	5.82	3.60	3,52				-
pН	+/- 0.1	7.52	1.51	7.51	7.5/_				-
ORP (mV)	+/- 10 mV**	<u>_50</u>	うひ <u></u>	50	49				-
Turbidity (NTU)	+/- 10%**							·	_
H_2S (mg/L)				_					-
Fe^{2+} (mg/L)						1			
Check stability after the	wee readings a	nd every read	ding t	hereafter i	intil achieve	d.			
**Only one of these p	arameters must	reach stabili	ity.						
Observations:									
Volume of water purg		gal Sam	lons	. 11	35 (:1:				
Sample Date: 5/2	19 65	Sam	ple 1	ime: <u>[</u>	: <u> </u>	tary time)	utuidaa / atk	aer'	
Was metals sample fil	tered prior to p	reservation?	Y.	ES NO	method: (J.45 μm cai	ririage / ou	101.	
Color of water before	filtration:	Afte	er filt	ration:	ain:				
Reaction upon additio	n of preservativ								
Appearance of Water:	(Clear/Slightly	y i urbiax i ui	rbia/ v	very luibi	.u)				
Well condition:									
\sim						/	1		
	\ \	\mathcal{L}			ъ.	5/01	10 C-		

						_			
'acility Name: GP-For	mer Allison Pl	ant 10		KEI Pro	ject #: 2	.829e-C	01/003		
acility Name: GP-Former Allison Plant 10 Sample I.D.: 133 R			Well Lo	cation:					
Sample 1.D.: 132									
Monit	oring Well Da	ta			S	ample	Types (cir	cle all app	licable)
Well Material	orms wen bu	(PVC)SS	/Teflo	n)	Monito				
Inside Diameter, in.	-	(10			Grab/C	ompos	ite		
Stick up or stick down	height -			ft	Split Sa	-			
Total depth of well (T)		ه ا		ft	Duplica	ate (Du	plicate ID:)
Depth to product	_			ft	MS/MS				
	_	9.0		ft	Other_				
Depth to water (DTW)	<u> </u>	7.0		11					
			vD .			Micro	opurge sar	nnling	
Conventional		<u></u>	R⇒	D ===#1== 0	f pump p				
Height of water column	n	_			r pump p mid-scr		CIII	j	3 ft
(H = TD - DTW)		ft					our cell?		<u>∕</u> ⁄⁄)/N
Conversion value (CV					i purged Iown >0.		ow cell?		Y (2)
1 Well volume = H x (CV <u>=</u>	gal		20	-			(Y
3 Well volumes =	==	gal			sive san	ipiing i	useu?		س <u>ار ت</u> mL/min
Purgemethod				Flowrat	_		llam compoli	e #	11112/11111
(B = bailer, P = pur	np) B/P			ID num	per from	contro	ller consol	U #	
*Conversion values (g	al/ft): 1" dia =	0.04, 2"	dia = 0).16, 4" d	1a = 0.65	o, 6" ai:	a = 1.47		
							D 1	T 14	Derrolt
Field Test(s)	Stability	<u>Result</u>	<u>Resu</u>			<u>esult</u>	Result	Result	Result
Performed	Range	(3 min)	(6 mi			<u>min)</u>	<u>(15 min)</u>	<u>(18 min)</u>	(21 min)
Temperature (°C)	+/- 3%	14.09	13.95					· · · · · · · · · · · · · · · · · · ·	
Spec. Cond (µmhos)	+/- 3%	1.041	1,03						
D.O. (mg/L)	+/- 10%**	2,93	2.81		<u> </u>				
pH	+/- 0.1	6.93	6.9						
ORP (mV)	+/- 10 mV**	316	<u> 3 il</u>	<u> 311</u>					
Turbidity (NTU)	+/- 10%**								
H_2S (mg/L)									
Fe ²⁺ (mg/L)									
Check stability after th	ree readings at	nd every r	eading	thereafte	er until a	chieve	d.		
**Only one of these pa	arameters must	reach stal	bility.						
· _									
Observations:									
Volume of water purge	ed from well:		gallons	, .					
Sample Date: > /	19 107	Sa	ample	Time: /	<u>2_:///</u>	_ (milit	tary time)		
Was metals sample file	tered prior to p	reservatio	n?	YES N	O me	ethod: C).45 µm car	tridge / oth	ier:
Color of water before:	filtration:	A	After fi	ltration:_					
Reaction upon addition	n of preservativ	⊬€₹? <u> </u>	ES 1	NO ex	plain:				
Appearance of Water:	(Clear/Slightly	y Turbid/T	Turbid.	/Very Tu	rbid)				
Well condition:	,								
	•								
0		\circ					-1-10		
Signature:			·		Da	ate:	7/20/02		
<u> </u>	7						. 1		

cility Name: GP-Former Allison Plant	KEI Project #: 2829e-001/003					
mple I.D.: 152		Well Loc	ation:			
Monitoring Well Data					cle all app	licable)
Well Material (PV	C)SS/Teflo		A on itoring W			
Inside Diameter, in.	(10246)	\ \(\xi\)	Grah Compos	site		
Stick up or stick down height	_	ft S	Split Sample			
Total depth of well (TD)	itile	ft I	Duplicate (Du	iplicate ID:)
Depth to product		ft 1	MS/MSD			
1 -	3,23	ft (Other			
	. (2)					
Conventional sampling	⊂OR⇒		Micr	opurge sai	npling	
Height of water column	7	Depth of	pump placem	ent		1
(H = TD - DTW) ft		(place i	mid-screen)			5.6 f
Conversion value (CV)* x		Bubbles p	ourged from f	low cell?		<u>∕</u> ⁄⁄ N
1 Well volume = H x CV = gal		Is drawdo	own >0.3 feet			(b/ N
3 Well volumes = gal	1	Was pass	ive sampling	used?		Y / 🖄
Purge method		Flowrate				mL/mir
(B = bailer, P = pump) B / P	İ	ID numbe	er from contro	oller consol	e #	
*Conversion values (gal/ft): 1" dia = 0.0	4, 2" dia = (
Gentalian (and a gental).	,	•				
ld Test(s) Stability Re	sult Resu	ılt Resul	t Result	Result	<u>Result</u>	<u>Result</u>
	min) (6 mi	<u>in) (9 mir</u>	<u>(12 min)</u>	(15 min)	(18 min)	(21 min)
	16.80	14.40	1655			
1 2	30 1554	1 1552	1562			
	92 9.9		16.03			
pH +/- 0.1 7.	56 75B	7.57				
ORP (mV) +/- 10 mV** 30	502	305	309			
Turbidity (NTU) +/- 10%**						
$H_2S (mg/L)$						
Fe^{2+} (mg/L)						
Check stability after three readings and e	very reading	thereafter	until achieve	d.		
**Only one of these parameters must read	ch stability.					
-						
Observations:						
Volume of water purged from well:	gallons	S 12	رکنے و			
Sample Date: <u>7 / 29 / 08</u>	Sample	Time: 13	_: <u>35</u> (mili	tary time)		
Was metals sample filtered prior to prese	rvation?	YES NO	method: (0.45 µm cai	tridge / oth	ier:
Color of water before filtration:	After fi	.ltration:				
Reaction upon addition of preservatives2						
Appearance of Water: (Clear/Slightly Tu	ırbid/Turbid	/Very Turb	oid)			
Well condition:						
				1 1		
1 1 (/) /			-	2/10/	\	
Signature:	2		Date:) 124/10	16	

Facility Name: GP-Former Allison Plant 10		KEI Project #: 2829e-001/003
Sample I.D.: 146		Well Location:
Sample 1.D 146		
Monitoring Well Data		Sample Types (circle all applicable)
46x 1 CVC C	S/Teflon	
VY CIT IVILITORIAL	3 6)	Grab/Composite
		ft Split Sample
Stick up or stick down height		ft Duplicate (Duplicate ID:)
10000	- 1	ft MS/MSD
Depth to product		ft Other
Depth to water (DTW) 9.32	- 1	It other
	on [Micropurge sampling
Conventional care	OR⇒	
Height of water column	-	Depth of pump placement (place mid-screen) Z0.24 ft
(H = TD - DTW) ft		(place find-screen)
Conversion value (CV)* x		Dubbles par get months
1 Well volume = H x CV = gal		13 drawdown o.5 2000
3 Well yeiumes = gal	ī	T /min
Purge method		Flowlate -
(B = bailer, P = pump) B/P		II) IIdilioci Liolli condicita conse
*Conversion values (gal/ft): 1" dia = 0.04 , 2"	dia = 0.	.16, 4" dia = $0.65, 6$ " dia = 1.4 /
· ·		
Field Test(s) Stability Result	<u>Resul</u>	"'
Performed Range (3 min)	<u>(6 min</u>	n) (9 min) (12 min) (15 min) (18 min) (21 min)
Temperature (°C) +/- 3% 16:35	16-7-5	
Spec. Cond (μ mhos) +/- 3% $\frac{.905}{}$	1903	
D.O. (mg/L) +/- $10\%**$ 2.23	2-09	
pH +/- 0.1 <u>6.86</u>	6.85	
ORP (mV) +/- 10 mV** 161	161	162
Turbidity (NTU) +/- 10%**		
$H_2S (mg/L)$		
Fe^{2+} (mg/ I)		
Check stability after three readings and every	reading 1	thereafter until achieved.
**Only one of these parameters must reach sta	ability.	
•		
Observations:		
Volume of water purged from well:	gallons	14 00
Sample Date: 5/19/08	Sample T	Time: 17 : 00 (military time)
Was metals sample filtered prior to preservation	on? Y	YES NO method: 0.45 μm cartridge / other:
Color of water before filtration:	After filt	tration:
Reaction upon addition of preservatives?	YĘS N	NO explain:
Appearance of Water: (Clear/Slightly Turbid)	Turbid/	(Very Turbid)
Well condition:		
	/	
	_	
Signature:		Date: 5 129 0 8

acility Name: GP-Former Alli	son Plant 10	KEI Project #: 2829e-001/003				
ple I.D.: 15D		Well Location:				
Monitoring W	ell Data	Sample Types (circ	le all applicable)			
Well Material	(PVC)SS/Teflo					
Inside Diameter, in.	(102) 6)	Grah/Composite				
Stick up or stick down height		ft Split Sample				
Total depth of well (TD)	18.48	ft Duplicate (Duplicate ID:)			
Depth to product		ft MS/MSD				
Depth to water (DTW)	12.33	ft Other				
Depth to water (D111)						
Conventional samplin	(ag) ←OR⇒	Micropurge sam	pling			
Height of water column		Depth of pump placement				
(H = TD - DTW)	ft	(place mid-screen)	15.48 f			
Conversion value (CV) x		Bubbles purged from flow cell?	EV N			
1 Well volume = $14 \times CV$ =	gal	Is drawdown >0.3 feet	₩ N (\			
3 Well volumes = =	gal	Was passive sampling used?	Y /(N)			
	Edi	Flowrate =	mL/mir			
Purge method (B bailer, P = pump)	B/P	ID number from controller console #				
*Conversion values (gal/ft): 1'	$\frac{B}{1}$ \frac{B}	0.16, 4" dia = 0.65, 6" dia = 1.47				
Conversion values (ganity: 1	uiu 0.01, 2 414	,				
75 Id Test(s) Stabil	ity Result Resu	ult Result Result Result	Result Result			
lormed Rang			(18 min) (21 min)			
Temperature (°C) +/- 3		1 . 6				
Spec. Cond (µmhos) +/- 3						
D.O. (mg/L) +/- 10%						
pH +/- 0						
ORP (mV) +/- 10 m						
Turbidity (NTU) +/- 109						
H_2S (mg/L)						
Fe^{2+} (mg/L)						
Check stability after three read	ings and every reading	g thereafter until achieved.				
**Only one of these parameter	s must reach stability.					
<u> </u>						
Observations:						
Volume of water purged from	well: gallon	S				
Sample Date: 5 / 14 / 100	Sample	Time: 19: 63 (military time)				
Was metals sample filtered price	or to preservation?	YES NO method: 0.45 μm cart	ridge / other:			
Color of water before filtration	: After f	iltration:				
Reaction upon addition of pres	ervatives? YES	NO explain:				
Appearance of Water: (Clear/S	Slightly Turbid/Turbid	YVery Turbid)				
Well condition:		/				
	\frown	c 1				
	~ ~ <i>U</i>	Date: 5 29 0 2	٠ ۲			
Signature:		Date:// - 1/0 /	<i></i>			

acility Name: GP-Former Allison Plant 10		KEI Project #: 2829e-001/003				
		Well Location:				
Sample I.D.: Iw-2						
Monitoring Well Data		Sample Types (circle all applicable)				
77 011 1714:01141	SS/Teflo					
Inside Diameter, in. (10	<u> </u>	Grah/Composite				
Stick up or stick down height		ft Split Sample				
Total depth of well (TD)	87	ft Duplicate (Duplicate ID:)				
Depth to product		ft MS/MSD				
Depth to water (DTW) /2.6	06	ft Other				
Conventional sampling =	=OR⇒	Micropurge sampling				
Height of water column		Depth of pump placement				
(H = TD - DTW) ft		(place mid-screen) 13.87 f				
Conversion value (CV)* x		Bubbles purged from flow cell?				
1 Well volume = H x CV = gal		Is drawdown >0.3 feet				
3 Well volumes = gal		Was passive sampling used? Y/N				
Purge method		Flowrate = mL/min				
AD = hailer P = numn B/P		ID number from controller console #				
*Conversion values (gal/ft): 1" dia = 0.04, 2	" dia = 0	0.16, 4" dia = 0.65, 6" dia = 1.47				
Conversion variable (g						
Field Test(s) Stability Result	t <u>Resu</u>					
Performed Range (3 min) <u>(6 mi</u>	in) (9 min) (12 min) (15 min) (18 min) (21 min)				
Temperature (°C) +/- 3% 15.47	15.30	0 15.27				
Spec. Cond (μmhos) +/- 3% / 113	1714	() 723				
D.O. (mg/L) +/- 10%** 2.46	2,3	6 2.22				
pH +/- 0.1 7.02	_					
ORP (mV) +/- 10 mV** $\frac{260}{}$	256	251				
Turbidity (NTU) +/- 10%**						
$H_2S (mg/L)$	_					
Fe^{2+} (mg/L)	···					
Check stability after three readings and every	y reading	thereafter until achieved.				
**Only one of these parameters must reach s	tability.					
·						
Observations:						
Volume of water purged from well:Sample Date: 5 /29 /68	_ gallons					
Sample Date: 5 /29 / 68	Sample	Time: $\underline{79}$: $\underline{90}$ (military time)				
Was metals sample filtered prior to preservat	tion?	YES NO method: 0.45 μm cartridge / other:				
Color of water before filtration:	After fi	Itration:				
Reaction upon addition of preservatives?	XES 1	NO explain:				
Appearance of Water: (Clear/Slightly Turbic	KTurbid	/Very Turbid)				
Well condition:						
	//	Z/ac/ac				
Signature:		Date: 5/29/08				
		· • • • • • • • • • • • • • • • • • • •				

'coility Name: GP-Former A	llison Plant 10	KEI Project #: 2829e-001/003	
ple I.D.: Two-(Well Location:	
Monitoring V	Well Data	Sample Types (circ	de all applicable)
Well Material	(PVC)SS/Tefl		
Inside Diameter, in.	$(1 \bigcirc 46)$	Grab/Composite	
Stick up or stick down height		ft Split Sample	
Total depth of well (TD)	14.82	ft Duplicate (Duplicate ID:)
Depth to product		ft MS/MSD	
Depth to water (DTW)	11.12	ft Other	
Conventional sampl	ing) ←OR⇒	Micropurge san	ipling
Height of water column		Depth of pump placement	
(H = TD - DTW)	ft	(place mid-screen)	11.82 f
Conversion value (CV)* x		Bubbles purged from flow cell?	Ø/N
1 Well volume = H x CV =		Is drawdown >0.3 feet	Ø/N
3 Well volumes = =	-	Was passive sampling used?	Y/N
Purge method	5	Flowrate =	mL/mir
(B = bailer, P = pump)	B / P	ID number from controller console	#
*Conversion volves (gal/ft):	$\frac{D}{1}$ " dia = 0.04 2" dia =	0.16, 4" dia = 0.65, 6" dia = 1.47	
Conversion values (gai/it).	1 414 0.01, 2 4,4	, , , , , , , , , , , , , , , , , , , ,	
Spec. Cond (µmhos) +/- D.O. (mg/L) +/- 10 pH +/- 10 Turbidity (NTU) +/- 10 H ₂ S (mg/L) Fe ²⁺ (mg/L) Check stability after three rea **Only one of these paramete Observations: Volume of water purged from Sample Date: 5 / 29 / 10	nge (3 min) (6 m 3% (4.5) (4.3) 3% (5.7) (4.3) 3% (5.7) (5.7) 0.1 (5.5) (6.6) mV** (6.9) (6.8) 0.6) (6.6) mV** (6.9) (6.8) dings and every readingers must reach stability	nin) (9 min) (12 min) (15 min) 1 14.33 37 1843 510 5169 65 659 6 168 g thereafter until achieved.	Result (18 min) (21 min)
was metals sample filtered pr	nor to preservation: After t	filtration:	
Color of water before filtration Reaction upon addition of pre		NO explain:	
Appearance of Water: (Clear Well condition:	/Slightly Turbid Turbi		
Signature:	Dre-	Date: _5 29 08	
(\ \		·	

'acility Name: GP-Former Allison Plant 10)	KEI Projec	t #: 2829e-(001/003			
Sample I.D.: 163	Well Locat	ion:					
Sample I.D., 165							
Monitoring Well Data			Sample	Types (cir	cle all appl	licable)	
Well Material (PVC)	SS/Teflo	on) 144	enitoring W				
77 011 11111011111	1046)		ableompos	ite			
Stick up or stick down height		ft Sp	lit Sample				
Total depth of well (TD)	,50		iplicate (Du	plicate ID:)	
Total dopos	1/-		S/MSD				
Depth to product	0.95		her				
Depth to water (DTW)	0.73	10					
	⇔OR⇒		Micr	opurge sar	npling		
Conventional samp	⇔ CK⇒	Depth of pu			1- <u></u> 5		
Height of water column (H = TD - DTW) ft			id-screen)	CIIC	16	.50	ft
(11-10-01-11)		į · ·	rged from f	low cell?		Ø/N	
Conversion value (CV)* x		Is drawdow		10 11 0011.		X O/N	_
1 Well volume = Hx CV = gal			e sampling	nsed?		Y /(Ñ)	
3 Well volumes = gal		Flowrate =	c sampinig	uscu.		mL/mi	in
Purge method			funna anntro	llor consol	e #		
A(B = bailer, P = pump) B / P	on 1: /	ID number	Irom contro	a = 1.47	<u>τ</u>		_
*Conversion values (gal/ft): 1" dia = 0.04,	2'' dia = 0	$0.16, 4^{\circ} \text{ dia} =$	- 0.03, 6 ai	a = 1.47			
	. 	1. D 1/	D16	Pogult	Result	Result	
Field Test(s) Stability Resu			Result	Result (15 min)	(18 min)	(21 min)	
Performed Range (3 mi	<u>in) (6 m</u>		(12 min)	(13 111111)	(10 11111)	(21 11111)	
Temperature (°C) +/- 3% /4.9							
Spec. Cond (µmhos) +/- 3% 166							
D.O. (mg/L) +/- 10%**							
pH +/- 0.1 <u>6.7</u>							
ORP (mV) +/- 10 mV** <u>\(\forall 0\)</u>	<u>39</u>	40					
Turbidity (NTU) +/- 10%**							
$H_2S (mg/L)$							
Fe^{2+} (mg/L)			., ., .,	1		And the latest terminal termin	
Check stability after three readings and eve	ry reading	g thereafter u	ntil achieve	a.			
**Only one of these parameters must reach	stability.						
Observations:							
Volume of water purged from well:	gallon	S , _	Z.,	, , , , , , , , , , , , , , , , , , ,			
Sample Date: <u>5 /29 / 08</u>	Sample	Time: 15:	$\frac{\mathcal{L}}{\mathcal{L}}$ (mili	tary time)			
Was metals sample filtered prior to preserv	ation?	YES NO	method: ().45 µm car	tridge / oth	er:	-
Color of water before filtration:	After fi	iltration:					
Reaction upon addition of preservatives?	YES	NO expla	in:			<u> </u>	
Appearance of Water: (Clear/Slightly Turk	id/Turbid	d/Very Turbio	d)				
Well condition:	/						
				1			
, / / _				1 /			
			Date:	=15alas			
Signature:			Date:	<u> </u>)		
(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				· ·			

Facility Name: GP-Former Allison Plant 10	KEI Project #: 2829e-001/003				
ple I.D.: 173	Well Location:				
ipic i.b					
Monitoring Well Data	Sample Types (circle all applicable)				
Well Material (PVC)SS/Teflo					
Inside Diameter, in. (1246)	Grab/Composite				
Stick up or stick down height	ft Split Sample				
Total depth of well (TD)	ft Duplicate (Duplicate ID:)				
Total depth of the control of the co	ft MS/MSD				
Depth to product Depth to water (DTW) 12.36	ft Other				
Depth to water (DTW) 12.36	It out				
O.D.	Micropurge sampling				
Conventional sampling ←OR⇒					
Height of water column	Depth of pump placement (place mid-screen) 14.7				
(H = TD - DTW) ft	(1)				
Conversion value $(eV)^*$ x					
1 Well volume = H x CV = gal					
3 Well volumes = <u>gal</u>	vv as passive sampling assure				
Purge method	1 lowrate				
(B = bailer, P = pump) B/P	1D Hamber Men Comment				
*Conversion values (gal/ft): 1" dia = 0.04, 2" dia =	$0.16, 4^{\circ} \text{ dia} = 0.65, 6^{\circ} \text{ dia} = 1.47$				
	ult Result Result Result Result Result				
Tight Test(s) Stability Result Result	dit result				
formed Range (3 min) (6 m					
Temperature (°C) +/- 3% <u>14.24</u> /4.2	/ /				
Spec. Cond (μmhos) +/- 3% ,774 ,76					
D.O. (mg/L) +/- 10%** 6.24 6.6					
pH +/- 0.1 <u>7.// 2./</u> ORP (mV) +/- 10 mV** F/ 8 2					
	<u> </u>				
Turbidity (NTU) +/- 10%**					
$H_2S (mg/L)$					
Fe^{2+} (mg/L)	(1 Crawtil calcious)				
Check stability after three readings and every reading	g thereafter until achieved.				
**Only one of these parameters must reach stability.					
:					
Observations:					
Volume of water purged from well:gallon	e Time: 9:50 (military time)				
Sample Date: 5/30/08 Sample	rime: 1: 10 (initially time)				
Was metals sample filtered prior to preservation?	YES NO method: 0.45 µm cartridge / other.				
Color of water before filtration: After f	NO explain:				
Reaction upon addition of preservatives? YES					
Appearance of Water: (Clear/Slightly Turbid/Turbid	1/Very Turbid)				
Well condition:					
	(i				
	Date: 5 30 18				
Signature:	Date. J / V V J				

`acility Name: GP-Former Allison Plant 10	KEI Project #: 2829e-001/003				
Sample I.D.: 156	Well Location:				
Monitoring Well Data	Sample Types (circle all applicable)				
Well Material (PVC)SS/Teflo	n) Monitoring Well				
Inside Diameter, in. (12) 6)	Grab/Composite				
Stick up or stick down height	ft Split Sample				
Total depth of well (TD) 18.6	ft Duplicate (Duplicate ID:)				
Depth to product	ft MS/MSD				
Depth to water (DTW) /1.6	ft Other				
Conventional sampling ←OR⇒	Micropurge sampling				
Height of water column	Depth of pump placement				
(H = TD – DTW) ft	(place mid-screen) /5.6 ft				
Conversion value (CV)* x	Bubbles purged from flow cell?				
1 Well volume = H x CV = gal	Is drawdown >0.3 feet				
3 Well volumes = gal	Was passive sampling used? Y/N				
Purge method	Flowrate = mL/min				
(P - boiler P = nump) B/P	ID number from controller console #				
*Conversion values (gal/ft): 1" dia = 0.04, 2" dia = 0	0.16, 4" dia = 0.65, 6" dia = 1.47				
'ield Test(s) Stability Result Resu					
Performed Range (3 min) (6 mi	(n) (9 min) (12 min) (15 min) (18 min) (21 min)				
Temperature (°C) +/- 3% 13.77 /3.62	13/66				
Spec. Cond (μmhos) +/- 3% 1809 180	7 ,801				
D.O. (mg/L) +/- 10%**					
pH +/- 0.1 6.99 6.9					
ORP (mV) +/- 10 mV** 217 215	218				
Turbidity (NTU) +/- 10%**					
$H_2S (mg/L)$					
Fe^{2+} (mg/L)					
Check stability after three readings and every reading	thereafter until achieved.				
**Only one of these parameters must reach stability.					
Observations:					
Volume of water purged from well: gallons	m: (O)) D (m: Vitems time)				
Sample Date: $\frac{5/30/08}{}$ Sample	Time: 10 : 20 (military time)				
Was metals sample filtered prior to preservation?	YES NO method: 0.45 μm cartridge / other:				
Color of water before filtration: After fi	Itration:				
Reaction upon addition of preservatives? YES	NO explain:				
Appearance of Water: (Clear/Slightly Turbid/Turbid	(Very Turbia)				
Well condition:					
$ll \circ ll $					
WKW! "	Date: 5/30/08				
Signature:	Date.				

'agility Name: GP-For	mer Allison Pi	lant 10	KEI Projec	ct #: 2829e-	001/003		
ple I.D.: 75 27 10-12			Well Loca				
pic 1.D.: 70 E							
Monito	oring Well Da	ta		Sample	Types (cir	cle all app	licable)
Well Material	ing (on 2 a	(PVC)SS/Teflo	on) 🔯	lonitoring W			
Inside Diameter, in.	_	(1046)		rab/Compos			
Stick up or stick down	height -		ft S ₁	plit Sample			, \
Total depth of well (TD		18.6	ft	uplicate (Du	iplicate ID:	10-181.	<u>(J.P.)</u>
Depth to product	-	70.0	ft M	IS/MSD			• /
Depth to water (DTW)	_	14.15	ft δ	ther			
Depuir to water (DT 11)		17.15					
(Ctional	sampling	—— ←OR⇒		Micr	opurge sai	mpling	
Conventional			Depth of p	ump placem		1	
Height of water column	1	ft	_	nid-screen)	. •	15	7,6 ft
(H = TD - DTW)	******		1 ~	irged from f	low cell?		Ø/N
Conversion value (CV)			-	vn >0.3 feet			♂ / N
1 Well volume = H x C		gal		ve sampling			Y Ø
3 Well volumes =	=	gal	Flowrate =		uscu:		mL/min
Purge method	D / D			from contro	aller consol	e #	
(B = bailer, P = pur	np) B/P		O 16 4" die:	- 0.65 6" di	$i_2 = 1.47$	С п	
*Conversion values (ga	il/ft): 1" dia =	$0.04, 2^{\circ} \text{ dia} = 0$	0.16, 4 dia -	- 0.05, 0 di	ia — 1. 7 7		
	G. 1:1:	Desalt Dog	ult Dogult	Result	Result	Result	Result
Tind Test(s)	Stability	Result Resu			(15 min)	(18 min)	(21 min)
ormed	Range	(3 min) (6 m		(12 11111)	(15 11111)	(10 111111)	
Temperature (°C)	+/- 3%						
Spec. Cond (µmhos)	+/- 3%	1648 164 5.47 5,3	5,25				
D.O. (mg/L)	+/- 10%**	7.06 7.0					
pH	+/- 0.1						
Old (m)	+/- 10 mV**	245 249	2 10				
Turbidity (NTU)	+/- 10%**						
$H_2S (mg/L)$				-			
Fe ²⁺ (mg/L)	1.	1 die	a thoroafter i	until achieve	·d		
Check stability after the	ree readings at	nu every reading	g increation t	mili demeve	· · ·		
**Only one of these pa	rameters must	reach stability.					
01 //							
Observations:	d from wall:	gallon	c	,			
Volume of water purge		ganon Sample	Time: i/)	· 40 (mili	tary time)		
Sample Date: 5/3 Was metals sample filte	orod prior to p	recervation?	YES NO	method:	0.45 um ca	rtridge / oth	ner:
Color of water before f	ered prior to p	Δ fter f	iltration:	11101110-		<i>-</i>	-
Reaction upon addition	of manon.	Proc? VFC	NO expla	ain:			
Appearance of Water:	(Close/Elight)	v Turbid/Turbic	1/Very Turbi	q)			
	(Cleary anglia)	y Turona Turona	i very raie.				
Well condition:	$\overline{}$						
()	, \						
//	<i>\\</i>				_ ,		
Signature:	$1 h \wedge 0$			Date:	5/34/08		
AIOHAIHE. 33 T		-					

CD C	Dlont 10	KEI Project #: 2829e-001/003				
acility Name: GP-Former Allison	Plant 10	Well Location:				
Sample I.D.: /57		well Eduation.				
		Sample Types (circ	le all applicable)			
Monitoring Well I	Data Car Car		ic an application			
Well Material	(PVC)SS/Teflo					
Inside Diameter, in.	(1246)	Grah/Composite				
Stick up or stick down height		ft Split Sample	,			
Total depth of well (TD)	78	ft Duplicate (Duplicate ID: _)			
Depth to product		ft MS/MSD				
Depth to water (DTW)	11.34	ft Other				
Depth to water (in)	1					
(Conventional sampling)	(=OR⇒	Micropurge sam	pling			
		Depth of pump placement				
Height of water column	ft	(place mid-screen)	15 ft			
(H = TD - DTW)		Bubbles purged from flow cell?	∕ \$/N			
Conversion value (CV)* x		Is drawdown >0.3 feet	<u>/</u> Y)/ N			
1 Well volume = H x CV =	gal	Was passive sampling used?	Y // X			
3 Well volumes = =	gal	-	mL/min			
Purge method		Flowrate =				
A = bailer, P = pump) B/	<u>P</u>	ID number from controller console				
*Conversion values (gal/ft): 1" dia	= 0.04, 2" dia $= 0$	$0.16, 4^{\circ} \text{ dia} = 0.65, 6^{\circ} \text{ dia} = 1.47$				
			D 1/ Decelt			
Field Test(s) Stability	Result Resu		Result Result			
Performed Range	(3 min) (6 mi	<u> </u>	(18 min) (21 min)			
Temperature (°C) +/- 3%	14.99 14.31					
Spec. Cond (µmhos) +/- 3%	1736 1738					
D.O. (mg/L) +/- 10%**	7,06 5,00					
pH +/- 0.1	7.02 6.99					
ORP (mV) +/- 10 mV^{**}	211 210	210 209				
Turbidity (NTU) +/- 10%**						
$H_2S (mg/L)$						
Fe ²⁺ (mg/L)						
Check stability after three readings	and every reading	thereafter until achieved.				
**Only one of these parameters mu	st reach stability.					
Omy one of these parameters ma	Strough State 1119	·				
Observations						
Observations:	gallons					
Volume of water purged from well: Sample Date: 5/20/68	Sample	Time: 1 : 30 (military time)				
Sample Date: 1/10/40	Dampie	YES NO method: 0.45 μm carti	ridge / other:			
Was metals sample intered prior to	preservation:	1tration:				
Color of water before filtration:	Altern	NO explain:				
Reaction upon addition of preserva	tives?	West Tabled				
Appearance of Water: (Clear/Sligh	tly Turbial Turbia	(Very Turbia)				
Well condition:						
	$\cdot \wedge \cdot / \cdot / \cdot $	/				
\\ \\ /\	N	5/3/05/	•			
Signature:	/	Date: 5/30/04				

acility Name: GP-Former Allison Plant 10			KEI Project #: 2829e-001/003				
ple I.D.: 168			Well L	ocation:			
Monit	toring Well Dat	a			Types (cir	cle all app	licable)
Well Material		(PVC)SS/Teflon)		Monitoring Well			
Inside Diameter, in.		$(1 \bigcirc 46)$		Grab/Compos	ite		
Stick up or stick down height			ft	Split Sample			
Total depth of well (TD)		25	ft	Duplicate (Du	plicate ID:)
Depth to product			ft	MS/MSD			
Depth to water (DTW	<u> </u>	18.15	ft	Other			
Conventiona	sampling	⇔ Micropurge sampling					
Height of water colum			Depth o	f pump placem	ent		
(H = TD - DTW)	****	ft				f	
Conversion value (CV)* x		Bubbles purged from flo			low cell?		Ø/N
1 Well volume = Hx		al Is drawdown >0.3 feet			Ø/N		
3 Well volumes =		5		ssive sampling	used?	Y /Ø	
Purge method	<u></u>		Flowrat	e =			mL/mir
R = bailer P = put	mp) B/P	j	ID num	ber from contro	ller consol	e #	
*Conversion values (g	ral/ft): 1" dia = 0	0.04, 2" dia = 0	0.16, 4" d	ia = 0.65, 6" di	a = 1.47		
(5	, ,						
riald Test(s)	Stability	Result Resu	ılt <u>Res</u>	ult <u>Result</u>	Result	<u>Result</u>	<u>Result</u>
Formed	▼	(3 min) (6 m	<u>in) (9 m</u>	<u>in) (12 min)</u>	(15 min)	<u>(18 min)</u>	(21 min)
Temperature (°C)	+/- 3%	14.80 14.6	6 14.6				
Spec. Cond (µmhos)		1932 192	9 193				
D.O. (mg/L)	+/- 10%**	3,53 3.13	3 19	3,21			
pH	+/- 0.1	6.97 649	5 6.9	5 694			
ORP (mV)		259 261	260	261			
Turbidity (NTU)	+/- 10%**						
H_2S (mg/L)							
Fe^{2+} (mg/L)							
Check stability after the	ree readings and	d every reading	g thereafte	er until achieve	d.		
**Only one of these p	arameters must i	reach stability.					
· — —							
Observations:							
Values of water mura	ed from well:	gallon	s .	2 63			
Volume of water purged from well: gallons Sample Date: 5 / 30 / e \ Sample Time: /2 : 60 (military time)							
Was metals sample filtered prior to preservation? YES NO method: 0.45 µm cartridge / other:							
Color of water before filtration: After filtration:							
Reaction upon addition of preservatives? YES NO explain:							
Appearance of Water: (Clear/Slightly Turbid/Very Turbid)							
Well condition:							
^ ^		\					
	\ /)					
// /	$\langle \langle \rangle$	•			2/12</td <td></td> <td></td>		
Signature:			Date:	<u> </u>			
	/				ι		

Facility Name: GP-Former Allison Plant 10	KEI Project #: 2829e-001/003			
	Well Location:			
Sample 1.D., 7.,7				
Monitoring Well Data Well Material Inside Diameter, in. Stick up or stick down height Total depth of well (TD) Depth to product Depth to water (DTW) Conventional sampling Height of water column (H = TD − DTW) Conversion value (CV)* 1 Well volume H x CV = gal 3 Well volumes = gal Purgemethod	Sample Types (circle all applicable)			
Purgemethod				
(B = bailer, P = pump) B/P	ID number from controller console #			
*Conversion values (gal/ft): 1" dia = 0.04, 2" dia = 0	0.16, 4" dia = $0.65, 6$ " dia = 1.47			
Field Test(s) Stability Result Result Performed Range (3 min) (6 min) Temperature (°C) +/- 3% 14/11 14/11 Spec. Cond (μmhos) +/- 3% 16/9 16/06 D.O. (mg/L) +/- 10%** 5/46 5/20 pH +/- 0.1 7/07 7/06 ORP (mV) +/- 10 mV** 298 298 Turbidity (NTU) +/- 10%**	Result R			
**Only one of these parameters must reach stability. Observations: Volume of water purged from well: gallons Sample Date: / 20 / 00 Sample Was metals sample filtered prior to preservation? Color of water before filtration: After fi Reaction upon addition of preservatives? YES 1 Appearance of Water: (Clear/Slightly Turbid/Turbid/Well condition:	Time: 13: 20 (military time) YES NO method: 0.45 μm cartridge / other: Itration:			

Facility Name: GP-Former Allison Plant 10	KEI Project #: 2829e-001/003			
iple I.D.: 16D	Well Location:			
Monitoring Well Data	Sample Types (circle all applicable)			
Well Material (PVC)SS/Teflo				
Inside Diameter, in. (1246)	Grah/Composite			
Stick up or stick down height	ft Split Sample			
Total depth of well (TD)	ft Duplicate (Duplicate ID:)			
Depth to product	ft MS/MSD			
Depth to water (DTW)	ft Other			
Depth to water (DTW)	TI Other			
(Conventional sampling) ←OR⇒	Micropurge sampling			
	Depth of pump placement			
Height of water column (H = TD - DTW) ft	(place mid-screen)			
	· · · · · · · · · · · · · · · · · · ·			
Conversion value (CV) x	Bubbles purged from flow cell? Is drawdown >0.3 feet (Y)/N			
1 Well volume = H x CV = gal				
3 Well volumes = gal				
Purge method				
$(B = bailer, P = pump) \qquad B/P$	ID number from controller console #			
*Conversion values (gal/ft): 1" dia = 0.04, 2" dia = 0	$0.16, 4^{\circ} \text{ dia} = 0.65, 6^{\circ} \text{ dia} = 1.47$			
	the Data Data Data Davids			
Gield Test(s) Stability Result Result				
$\frac{\text{ormed}}{\text{ormed}} \qquad \text{Range} \qquad \frac{\text{(3 min)}}{\text{(6.7)}} \frac{\text{(6 min)}}{\text{(6.7)}}$				
Temperature (°C) $+/-3\%$ 16.62 19.16				
Spec. Cond (μmhos) +/- 3% 1.25 1.24				
D.O. (mg/L) +/- 10%** 1.49 1.31	1,30			
pH +/- 0.1 <u>le. G4</u> <u>le. G3</u>	6.43			
ORP (mV) +/- 10 mV**				
Turbidity (NTU) +/- 10%**				
$H_2S \text{ (mg/L)}$				
Fe ²⁺ (mg/L)				
Check stability after three readings and every reading	thereafter until achieved.			
**Only one of these parameters must reach stability.				
Observations:				
Volume of water purged from well: gallons Sample Date:/30 / 65 Sample	T 12 4/2 (11)			
Was metals sample filtered prior to preservation?	YES NO method: 0.45 μm cartridge / other:			
Color of water before filtration: After fi	itration:			
Reaction upon addition of preservatives? YES N	NO explain:			
Appearance of Water: (Clear/Slightly Turbid/Turbid	Very Turbia)			
Well condition:				
	, 1			
	Date: 5/31/0K			
Signature:	Date:			

	YYTY D :						
acility Name: GP-Former Allison Plant 10	KEI Project #: 2829e-001/003						
Sample I.D.: 16/	Well Location:						
Monitoring Well Data	Sample Types (circle all applicable)						
Well Material (PVC)SS/Teflo	n) Monitoring Well						
Inside Diameter, in. (1246)	Grableomposite						
Stick up or stick down height	ft Split Sample						
Total depth of well (TD)	ft Duplicate (Duplicate ID:)						
Total depth of wen (1D)	ft MS/MSD						
Depth to product	ft Other						
Depth to water (DTW)	II Ottes						
	No.						
Conventional sampling ←OR⇒	Micropurge sampling						
Height of water column	Depth of pump placement						
$(H = TD - DTW) \qquad \qquad ft$	(place mid-screen) / / / f						
Conversion value (CV)* x	Bubbles purged from flow cell? (Y) N						
1 Well volume = H x CV = gal	Is drawdown >0.3 feet (Y)// N						
3 Well volumes = gal	Was passive sampling used? Y/🛇						
	Flowrate = mL/mir						
Purge method $(B = \text{bailer } P = \text{pump}) \qquad B / P$	ID number from controller console #						
$(B = bailer, P = pump) \qquad B/P$	1D Hullioti Holli Collei Che Che Collei Che						
*Conversion values (gal/ft): 1" dia = 0.04, 2" dia = 0	7.10, 4 dia = 0.03, 0 dia 1.47						
	ult Result Result Result Result Result						
ield Test(s) Stability Result Result	(21 .:)						
Performed Range (3 min) (6 mi							
Temperature (°C) +/- 3% 16.9 Verbe							
Spec. Cond (µmhos) +/- 3% 1.220 1.20	06 1,208 1,198						
D.O. (mg/L) +/- 10%** 1.83							
pH +/- 0.1 <u>6.77</u> <u>6.73</u>							
ORP (mV) +/- 10 mV** 100 /81	<u>181 182</u>						
Turbidity (NTU) +/- 10%**							
$H_2S (mg/L)$							
Fe ²⁺ (mg/L)							
Check stability after three readings and every reading	thereafter until achieved.						
Check stability after times readings and every reading	, incloured unit dome to a						
**Only one of these parameters must reach stability.							
Observations:							
Volume of water purged from well: gallons Sample Date: Sample Time: 14: 00 (military time)							
Sample Date: Sample Time: 14: 00 (military time)							
Was metals sample filtered prior to preservation? YES NO method: 0.45 µm cartridge / other:							
Color of water before filtration: After filtration:							
Reaction upon addition of preservatives? YES NO explain:							
Appearance of Water: (Clear/Slightly Turbid/Turbid/Very Turbid)							
Well condition:							
	f						
2 .	γ - 1						
	-kili						
Signature:	Date:						
Digitature.							